Genomewide analysis of polysaccharides degrading enzymes in 11 white- and brown-rot Polyporales provides insight into mechanisms of wood decay.
نویسندگان
چکیده
To degrade the polysaccharides, wood-decay fungi secrete a variety of glycoside hydrolases (GHs) and carbohydrate esterases (CEs) classified into various sequence-based families of carbohydrate-active enzymes (CAZys) and their appended carbohydrate-binding modules (CBM). Oxidative enzymes, such as cellobiose dehydrogenase (CDH) and lytic polysaccharide monooxygenase (LPMO, formerly GH61), also have been implicated in cellulose degradation. To examine polysaccharide-degrading potential between white- and brown-rot fungi, we performed genomewide analysis of CAZys and these oxidative enzymes in 11 Polyporales, including recently sequenced monokaryotic strains of Bjerkandera adusta, Ganoderma sp. and Phlebia brevispora. Furthermore, we conducted comparative secretome analysis of seven Polyporales grown on wood culture. As a result, it was found that genes encoding cellulases belonging to families GH6, GH7, GH9 and carbohydrate-binding module family CBM1 are lacking in genomes of brown-rot polyporales. In addition, the presence of CDH and the expansion of LPMO were observed only in white-rot genomes. Indeed, GH6, GH7, CDH and LPMO peptides were identified only in white-rot polypores. Genes encoding aldose 1-epimerase (ALE), previously detected with CDH and cellulases in the culture filtrates, also were identified in white-rot genomes, suggesting a physiological connection between ALE, CDH, cellulase and possibly LPMO. For hemicellulose degradation, genes and peptides corresponding to GH74 xyloglucanase, GH10 endo-xylanase, GH79 β-glucuronidase, CE1 acetyl xylan esterase and CE15 glucuronoyl methylesterase were significantly increased in white-rot genomes compared to brown-rot genomes. Overall, relative to brown-rot Polyporales, white-rot Polyporales maintain greater enzymatic diversity supporting lignocellulose attack.
منابع مشابه
Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi.
Basidiomycota (basidiomycetes) make up 32% of the described fungi and include most wood-decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two d...
متن کاملAcetylation of wood – A review
Wood is a porous three dimensional, hydroscopic, viscoelastic, anisotropic bio-polymer composite composed of an interconnecting matrix of cellulose, hemicelluloses and lignin with minor amounts of inorganic elements and organic extractives. Some, but not all, of the cell wall polymer hydroxyl groups are accessible to moisture and these accessible hydroxyls form hydrogen bonds with water. As the...
متن کاملEvidence from Serpula lacrymans that 2,5-dimethoxyhydroquinone Is a lignocellulolytic agent of divergent brown rot basidiomycetes.
Basidiomycetes that cause brown rot of wood are essential biomass recyclers in coniferous forest ecosystems and a major cause of failure in wooden structures. Recent work indicates that distinct lineages of brown rot fungi have arisen independently from ligninolytic white rot ancestors via loss of lignocellulolytic enzymes. Brown rot thus proceeds without significant lignin removal, apparently ...
متن کاملComparative analysis of the secretomes of Schizophyllum commune and other wood-decay basidiomycetes during solid-state fermentation reveals its unique lignocellulose-degrading enzyme system.
BACKGROUND The genome of Schizophyllum commune encodes a diverse repertoire of degradative enzymes for plant cell wall breakdown. Recent comparative genomics study suggests that this wood decayer likely has a mode of biodegradation distinct from the well-established white-rot/brown-rot models. However, much about the extracellular enzyme system secreted by S. commune during lignocellulose decon...
متن کاملEvolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii.
Wood decay mechanisms in Agaricomycotina have been traditionally separated in two categories termed white and brown rot. Recently the accuracy of such a dichotomy has been questioned. Here, we present the genome sequences of the white-rot fungus Cylindrobasidium torrendii and the brown-rot fungus Fistulina hepatica both members of Agaricales, combining comparative genomics and wood decay experi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mycologia
دوره 105 6 شماره
صفحات -
تاریخ انتشار 2013